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SUMMARY 

The aim ofthis contribution is to investigate the consistency and order of accuracy of different control surfaces 
used for finite area blade-to-blade flow calculations. The following cases will be treated: a hexagonal element, 
a trapezoidal element, a bitrapezoidal element and a quadrilateral element. Finally, the consistency 
conditions will be discussed and compared with respect to a cascade flow application. 

KEY WORDS Turbomachines Finite Volume Consistency 

INTRODUCTION 

About ten years ago, the so-called finite area method was introduced by McDonald' in order to 
compute the two-dimensional, inviscid and adiabatic flow of a perfect gas in the blade-to-blade 
plane of a linear cascade. Since then, this method has found wide and was even 
extended to  a three-dimensional geometry both in cascades4,10-' and turbine or compressor 
stages."+'* 

The finite area (or volume in three dimensions) approach is based on a numerical representation 
of conservation equations written in an integral form. The physical domain of the flow is divided 
into several control surfaces (or volumes) which exchange mass, momentum and energy. Hence, the 
main advantage of this method is that it remains very close to the physics of the problem. On  the 
contrary, a finite difference approach would require a co-ordinate transformation, which is 
generally quite complicated for a cascade geometry, whereas the use of a finite element method 
involves a rather complex and heavy mathematical formulation. 

The finite area approach is most generally coupled with a time marching numerical procedure 
which considers the solution of a steady problem as the asymptotic solution of the time dependent 
equations modelling this problem. The aim of this contribution is to study the con~istency '~ and 
the order of accuracy of different spatial discretizations of the blade passage. As a result, and 
without losing any generality, the time dependent terms will not be considered in what follows. 

DISCRETIZATION OF THE PARTIAL DIFFERENTIAL EQUATIONS 

The equations expressing the conservation of mass, momentum and energy, as they hold for an 
inviscid flow, are the Euler equations, Written in a stationary form, in the case of a two-dimensional 
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geometry, we get: 

T. ARTS 

df dg -+-=o 
ax ay 

If S is the area of a control surface, dS its perimeter and n, with projections nx and ny, the outward 
normal on as, the integration of equation (1) over S,  applying the Gauss theorem to the surface 
integrals, yields the following relation: 

As will be shown for turbomachinery applications, the control surfaces are chosen to be almost 
regular polygons. Equation (2) can then be approximated by a sum of integrals, providing a 
suitable averaging of the flux terms f and g on each of the rn sides of the polygons: 

m r  m r  

m 2 as,=as 
1=1 

Equation (3), where the dS, represent the sides of the chosen control area, is going to be applied 
to study the consistency and the order of accuracy ofdifferent spatial discretizations. As will be seen 
in the next sections, the approximated flux terms of equation (3) result from quite simple relations, 
depending on the kind of control surface. 

SPATIAL DISCRETIZATION O F  THE BLADE PASSAGE 

Two different kinds of grids are commonly used to discretize a blade passage. Although body-fitted 
meshes provide more accurate definition around leading and trailing edge, they require more 
involved programming work to be constructed. For this reason, we decided to use the very popular 
grid presented in Figure 1 because of its simplicity and flexibility. This grid is made up of several 
pseudo-streamlines and pitchwise lines. The pseudo-streamlines are uniformly spaced in the 
pitchwise (y) direction. The spacing between the pitchwise lines is regularly decreased from the inlet 
plane (AE) to the leading edge plane (BF) and regularly increased from the trailing edge plane (CG) 
to the outlet plane (DH) to avoid too many grid lines, and hence grid points, upstream and 
downstream of the cascade, in a region where less attention is paid to the flow, and, as a 
consequence, to limit the total computational time. Between leading and trailing edge, the spacing 
between the pitchwise lines is variable, depending on the required precision and the expected 
density gradients: a denser grid is used where more detailed information is desirable. 

Obviously, several types of control surfaces can be constructed in this grid. Nevertheless, we 
decided to consider only the ones which, to our knowledge, are the most frequently encountered in 
aerodynamic blade performance analysis. They are presented in Figure 2: a hexagonal element 
used by McDonald,' Couston2 and L e h t h a ~ s , ~  a trapezoidal element used by D e n t ~ n ~ . ~  a 
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Figure 1. Numerical domain of the flow 
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Figure 2. Description of the control surfaces 

bitrapezoidal element used by Van Hove6 and Arts9," and a quadrilateral element used by Essers 
and Kaf~eke.~, '  We will now establish the conditions necessary to obtain with these elements a 
spatial discretization consistent with the initial partial differential system of equations (1). 

Hexagonal control surface (McDonald) 

The apices of the hexagons (nodes of the discretization) are located at the intersections of the grid 
lines. A linear variation of the flow quantities between two adjacent nodes is assumed in order to 
calculate the axial and tangential components of the mass-, momentum- and energy-transport 
terms through the different boundaries of the control surfaces. For two adjacent nodes, the 
surfaces overlap both in axial and tangential directions. The different geometrical parameters are 
described in Figure 3. The unknowns in the node (i, k) are computed from the corresponding values 
in the surrounding nodes A, B, C, D, E and F. 

The application of equation (3) to this kind of element yields the following relation: 
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1 ( i + 1, k + l )  

Figure 3. Hexagonal control surface (McDonald) 

Expanding the different flux terms in Taylor series around the node (i, k), we get the following 
equation: 

($ + $)(Ax1Ayl + Ax2Ay3 + 2Ay2(Axl + Ax2)) 

1 A 2 6  + ay2Cz( Y l  Y4 - A Y 3 Y 5 )  + W Y 2 A Y l  - AYZAY3) + 3AYMYI - AY3) 

+ AYZ(AY: - AY2) + 9Y2(AY: - AYl) + AYZ(AY3AY5 - AYl A Y J l  

+ 3 ( A Y ; A x 2  - AYf A x , )  + (AX2AY3AY5 - AYlAXIAY4)l 

( 5 )  a29 
axay 

+ --(Ax:AY~ - AxfAy,)  + 0(A4) = 0 

When the Axj and Ayj tend uniformly towards 0, equation (4) can be condensed as follows: 

0(A3).second derivatives + O(A2) = 0 (g+;)+ 0 ( A 2 )  
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which is equivalent to equation (1) plus a first-order term. Thus, the discretization obtained with a 
hexagonal element is consistent with the partial differential system to be solved and is at least first- 
order accurate. To get a second-order accuracy at the point ( i ,  k) ,  the following conditions must be 
fulfilled: 

Ay, - Ay3 = O(A2) 
Ay4 - by,  = O(A2) 
AX, -AX, = O(A2) 

These conditions may allow some kind of periodically distorted mesh in the pitchwise direction; as 
a matter of fact, no specific relation is imposed between Ay, and Ay; But as our interest is in the 
area of blade-to-blade flow calculation in a realistic turbomachinery geometry, equation (7) can be 
generalized by requiring a regular mesh with at most small slope variations of the pseudo 
streamlines and nearly constant spacing between the pitchwise lines. 

(7) 1 
Trapezoidal control surface (Denton) 

The nodes at which the unknowns are computed are located on the pseudo-streamlines, half- 
way between two pitchwise lines. For two consecutive grid points the control surfaces overlap only 
in tangential direction. The different geometrical parameters are described in Figure 4. The 
unknowns at the node (i, k) are computed from the corresponding values at the surrounding nodes 
( i ,  k + l), (i + 1, k )  ( i ,  k - 1) and (i - 1, k). 

The fluxes are considered to be uniform along the boundaries AB, BC, CD and DA. Along AB 
and CD, the transport terms are computed from the flow values in the nodes located on both sides 

AY2 

( i - l , K )  

/ 

--7q---i- i 

Figure 4. Trapezoidal control surface (Denton) 
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of those boundaries whereas along BC and DA, the fluxes are calculated using the values at the 
nodes located on those boundaries. Using a weighted average, the application of equation (3) to 
this kind of element yields the following relation: 

f i , k A x 3  +fi+l,kAx2 
AY3 

- f i - l , k A X 2  + f i , k A X 1  

AX, + AX, + Ax, + Ax, 

Expanding the different flux terms in Taylor series around the node (i, k),  we get the following 
equation: 

a f  [ ( Ax2AY5 - AY7 + A Y 8 )  

4 ( tAX2@Y, + AY3)) + - AY, aY Ax, + 

4 
+ Ay, ( Ax2Ays - 

Ax, +Ax3 

When the Axj  and Byj  tend uniformly towards 0, and if the following conditions are satisfied 

then equation (9) can be condensed as equation (6) which is equivalent to equation (1) plus a first- 
order term. In view of equation (lo), the discretization obtained with this trapezoidal element is 
only conditionally consistent with equation (1) and in general first-order accurate. In the case of a 
blade-to-blade flow calculation, it would not be acceptable that the discretization would impose a 
definite relation between the A x j  and Ayj. For this reason, equation (10) may be expressed in a more 
severe form: 
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To get a second-order accuracy at point (i, k), the following conditions must be satisfied: 

Ay, - Ay3 = O(A2) 

Ay5 - Ay6 = O(A2) 

For the reasons mentioned above, in the particular case of a blade channel geometry, equation (12) 
can be replaced by 

These conditions express the fact that the grid has to be almost regular. 

Figure 5. Bitrapezoidal control surface (Van Hove-Arts) 
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Bitrapezoidal control surface (Van Hove-Arts) 

The nodes at which the unknowns are computed are located on the pitchwise lines, half-way 
between the pseudo-streamlines. For two consecutive nodes, the control surfaces overlap in the 
axial direction and not in the tangential direction. The different geometrical parameters are 
described in Figure 5. The unknowns at the node (i, k) are computed from the corresponding values 
at the surrounding nodes (i, k + l), (i + 1, k), (i, k - 1) and (i - 1, k). 

The fluxes are considered to be uniform along the boundaries AB, BCD, DE and EFA. Along 
BCD and EFA, the transport terms are computed from the flow values at the nodes located on both 
sides of these boundaries, whereas along AB and DE the fluxes are calculated using the values in the 
nodes located on these boundaries. The application of equation (3) to this kind of element yields the 
following relation: 

Expanding the different flux terms in Taylor series around the node ( i ,  k), we get the following 
equation: 

+ o ( ~ 4 )  = o 115) 

When the Axj and Ayj tend uniformly towards 0, and if the following conditions are satisfied: 

then equation (1 5) can be condensed as equation (6) which is equivalent to equation (1) plus a first- 
order term. In view of equation (16), the discretization obtained with a bitrapezoidal element is 
only conditionally consistent with (1) and first-order accurate in general. As the spatial increments 
must be independent in the x and y directions for a turbomachinery application, equation (16) may 
be written in the following form: 

Ay3 - Ay2 = O(A2) 
Ay2 - Ay, = O(A2) (17) 
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To get a second-order accuracy at point ( i ,  k),  the following conditions must be fulfilled: 

In the particular case of a blade-to-blade flow calculation, equations (18) may be expressed as: 

by ,  - Ay2 = O(A3) 
Ay2 - Ayl = O(A3) 
Ay4 - Ay, = O(A2) 
Axl - Ax2 = O(A2) 

which impose some kind of almost regular grid. 

Quadrilateral control surface (Essers-Kafyeke) 

The nodes at which the unknowns are computed are located in the centre of each control 
surface. These surfaces overlap neither in the axial nor in the tangential direction. The different 
geometrical parameters are described in Figure 6. The unknowns at the node ( 2 ,  k )  are computed 
from the values at the surrounding nodes (i, k + I ) ,  (i + 1, k), (t, k - 1) and (i - 1, k). 

The fluxes are considered to be uniform along the boundaries AB, BC, CD and DA. Through 
these boundaries, the transport terms are computed as arithmetical mean values between the fluxes 
at the nodes located on each side of the considered boundaries. The application of equation (3) to 

l l  1 

L 

Figure 6. Quadrilateral control surface (Essers-Kafyeke) 
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this kind of element yields the following relation: 
1 - dfi- l , k  + f i , k l A Y Z  - % f i , k  + 1 + f i , k l A Y 7  + $(gi,k 

+ $ ( f i , k + f i + l , k ) A Y 3  + t ( f i , k + f i , k - l ) ( A y 2  -AY3 + A Y 7 )  

g i , k +  l ) A x Z  

- ?%i,k + g i , k -  1 I A x Z  = (20) 
Expanding the different flux terms in Taylor series around the node (i, k), we get the following 

equation: 

When the Axj and Ay, tend uniformly towards 0, and if the following conditions are satisfied: 

Ayz(Axl - Axz)  - Ay3(AxZ - Ax3) = O(A3) 

A Y A ~ A Y ,  - BY, - AYJ + Y3(2AY6 - A Y ~  - A Y ~ )  = o(~3) (22) 
then equation (21) can be condensed as equation (6), which is equivalent to equation (1) plus a first- 
order term. In view of equation (22), the discretization obtained with this quadrilateral element is 
only conditionally consistent with equation ( 1 )  and first-order accurate in general. As no relation 
may exist between the Axj and Ayj in the case of a blade to blade flow calculation, equation (22) may 
be expressed in the same way as equation ( 1  1). 

To get a second-order accuracy at point (i, k),  the following conditions must be fulfilled. 

(23) I Ayz(Axl - Ax,) - Ay3(Ax, - Ax,) = O(A4) 

Ay3 - Ayz = O(Az) 
AY2(2AY5 - AY7 - + AY3(2AY6 - ' Y 7  - ' Y 8 )  = 0(A4) 

Ay6 - Ay5 = o(Az) 
Ax3 - AX1 = O(Az) 

For the particular case of a blade channel geometry, equation (23) can be transformed in the 
same way as equation (13); again an almost regular grid is required. 

RESULTS 

The different analyses we have done in the previous sections allow the evaluation of the consistency 
and the order of accuracy of different spatial discretizations proposed by various authors. The 
discretization obtained with the hexagonal control surface is unconditionally consistent with 
equation ( 1 )  and generally first-order accurate; six surrounding nodes are involved in the 
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computation of the unknowns at one grid point. In order to decrease the number of nodes involved 
in one control surface and thereby to reduce the total computational time, elements using four 
points were investigated. The consistency of the discretizations obtained with these elements is 
only conditional. 

Concerning the trapezoidal and quadrilateral control surfaces, we have shown that a 
consistency error, which could become important, arises when sensible variations occur either in 
the slope of the pseudo-streamlines or in the spacing between the pitchwise lines, equation (1 1). The 
former could be encountered for a high cambered blade or in the leading and trailing edge regions 
whereas the latter are almost unavoidable in the case of a blade with a large outlet angle (with 
respect to the axial direction) where such variations are introduced in order to limit the streamwise 
over pitchwise distortions of the control surfaces in the rear part of the blade passage. The 
condition (1 1) could also theoretically explain why D e n t ~ n ~ ’ ~  uses cusps to discretize the leading 
and trailing edge to get a smoother variation in the slope of the pseudo-streamlines in these 
regions. On the other hand, providing a first-order accurate discretization, no consistency error 
would be introduced by the computation of the flow in a passage presenting axial variations in the 
pitchwise distance between suction side and pressure side. 

Concerning the bitrapezoidal control surfaces, in the general case of a first-order accurate 
discretization, no consistency error will occur because of variations in the slope of the pseudo 
streamlines or in the spacing between the pitchwise lines. But contrary to the two other ‘four nodes’ 
elements, the existence of a strong axial variation in the pitchwise distance between suction side 
and pressure side could be responsible for such an error (17), especially around the leading and 
trailing edge. This is the reason why a blunt discretization is applied in these regions.’ According to 
this, it seems that the least severe condition to be fulfilled to insure consistency is related to the 
discretization obtained with the bitrapezoidal control surface (17). 

CONCLUSION 

The consistency and the order of accuracy of different spatial discretizations frequently applied to 
finite area cascade flow calculations were investigated. The discretization obtained with a 
hexagonal control surface is unconditionally consistent with the partial differential system to be 
solved and first-order accurate in general. Because of computational time requirements, three ‘four 
nodes’ control surfaces were also considered: trapezoidal, bitrapezoidal and quadrilateral. The 
consistency of the discretizations obtained with these elements is only conditional and, if 
consistent, generally first-order accurate. As far as our interest is in the area of blade to blade flow 
calculations, it appears that the use of the bitrapezoidal element imposes less severe restrictions on 
the geometry of the control surface than in the two other cases. 

LIST OF SYMBOLS 

specific heat at constant volume 
length element on the perimeter of the control surface 
total energy [ E  = c,T + (u2 + u’)/2] 
flux term of the conservative Euler system of equations 
flux term of the conservative Euler system of equations 
outward normal on a control surface 
of the order of 
pressure 
area of a control surface 
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T 
U 
V 

X 

Y 

P 
Ax, 

as 

temperature 
axial velocity 
tangential (or pitchwise) velocity 
axial co-ordinate 
tangential (or pitchwise) co-ordinate 

density 
perimeter of the control surface S 

Ay spatial increments 

Subscripts 

i, k spatial indices (axial and tangential direction) 

Superscripts 
- 

mean value 
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